Showing posts with label Wireless Communication. Show all posts
Showing posts with label Wireless Communication. Show all posts

Friday, April 9, 2010

Article: Wireless Remote Monitoring Prevents Complications of Chronic Diseases

An interesting article about the benefits of remote monitoring in the care of patients with chronic diseases from the Press of Atlantic City, 8 March 2010.  Here's the link to the article:  http://www.pressofatlanticcity.com/life/monday_health/article_1333e585-e3a6-5ba8-a411-75530f6b63cf.html

Quotes from the article:
Improving management
By early 2012, Americans will use about 15 million wireless health-monitoring devices, according to a forecast from ABI Research, which tracks mobile-technology trends. The mobile health market is projected to more than triple to $9.6 billion in 2012 from $2.7 billion in 2007, according to study from Kalorama Information Inc
[T]he first pilot project in the nation to assess whether the use of remote digital devices with data sent over the Internet to a doctor's office improved management of multiple chronic diseases - diabetes, heart disease and high blood pressure, also known as hypertension. 
Diabetics and hypertensive patients increased the number of days between appointments by 71 percent and 26 percent respectively ...
"One of the great promises of wireless (health) is making it a part of the patient's daily life, not an interruption to what they're doing every day," ...
From personal experience I believe the last sentence I quoted is among the most important in the article.  The entire process should be so smooth, so automated, so uncomplicated and unintrusive that the patient's life is uninterrupted and that the data is seamlessly collected and sent to the patient's caregiver.

Two other items to note.  The first is a brief discussion of the sensors connected to the patient's body.  They mention band-aid size electrodes.  I am not sure if these are the "digital plaster" that I've discussed in an earlier article.  http://medicalremoteprogramming.blogspot.com/2009/11/digital-plaster.html
Or something else.  I do not know, but it would be interesting to find out.  If I have any informational, I'll post it.  If you have any information, please enlighten us with a comment.

The second issue of note is the discussion in the article regarding payment, and who will do it.  Given the convoluted nature of our system of payments, this will be the most difficult issue to resolve, I believe.  It's ironic considering that remote monitoring saves money.   I think the technical issues will be minor in comparison.  I hope I am proved wrong.

Tuesday, March 30, 2010

How to Hack Grandpa's ICD

I've discussed possible communications security problems with implanted devices in an earlier post.  The link below provides a link to a University of Washington study that was published in 2008 in IEEE Symposium on Security and Privacy. Here's a link to the University of Washington article. 

Researchers find implantable cardiac defibrillators may expose patients to security and privacy risks


The article includes a link to the published paper.  I suggest that you download the paper and read it. 


Although the article was published in 2008, I believe it still has relevance.  First, it references a Medtronic Carelink Home Monitoring unit that I am quite certain is still in widespread use.  Second, they reverse engineered the Medtronic unit to create their own system that could mimic the Medtronic unit.  Although I am not an electrical engineer by any stretch of the imagination, I can attest to soundness of their methods.  I have worked with a variety of engineers who have tested communications system security using similar methods.  Furthermore, I have worked with engineers who have successfully cracked harden communications systems.  Thus I shall continue to monitor developments and findings in this field because this could impact the engineering of the communications systems for remote monitoring and programming.


One of the flaws in the Medtronic unit that made reverse engineering relatively easy was that the data was not encrypted.  I do not know if currently any or all communications between home monitoring units from any device company and implanted devices is encrypted.  Encryption adds significant overhead to communications.  Thus it makes the communication between the device and a home monitoring unit significantly longer.  It can impact battery life because encrypted transmissions have more bytes to transmit.

One of the potential limitations to hacking implant radio communications is the extremely low power level of that communication. The low power levels suggest that the hacker would have to be in close proximity to the device, within three meters.  However, their article did not extensively investigate the communications distance issue or methods that might be used to get around the proximity problem.

Third, the authors also had access to a Medtronic programmer.  A study of the operations of the programmer enable the authors extend their capabilities to hack communications with the implanted device. 

The scariest part of the article is a discussion of how it would be possible to kill a person with an ICD using the device they constructed.  Here's that section of the article (edited):

Inducing fibrillation

During implantation surgery, it is common for a physician to test the newly implanted ICD to ensure that it can both sense and appropriately treat a cardiac
condition known as ventricular fibrillation (V-Fib), one of the most common kinds of heart rhythm problems.
Accordingly, the ICD has several testing modes in which it can induce VFib.  Such a test — called an electrophysiological (EP) study — is normally conducted with cardiologists standing by to stop the fibrillation if the ICD fails to do so. ... [a] programmer sends the ICD a sequence of commands that ... [a] shock to be applied to the patient’s heart at a precise point in the patient’s cardiac rhythm, with the goal of inducing V-Fib. When its automatic therapies are enabled, the ICD should immediately detect and treat the fibrillation by delivering the proper therapy. ... We then used our commercial programmer to conduct an EP study ... We then replayed a recording of the EP study command sequence via our software radio. At least three of 30 replay attempts succeeded. We successfully triggered command shocks via replayed commands even after turning off all of the
ICD’s automatic therapies.

Quoted from:
Halperin, D, Heydt-Benjamin, T., Ransford, B., Clark, S., Defend, B., Morgan, W., Fu, K., Kohno, T., Maisel, W. Pacemakers and Implantable Cardiac Defibrillators:
Software Radio Attacks and Zero-Power Defenses, IEEE Symposium on Security and Privacy,
2008, pp 1-14.

Saturday, March 27, 2010

A more complete article on the NIST Grant fund BANS research

I have added a more complete article without comment regarding the NIST funded study to advance the capabilities of Body Area Networks (BANS).  It appears to be largely taken from the press-release from Worcester Polytechnic Institute.  

Here's the link: http://itisinteresting.me/2010/03/1-2-million-award-from-nist-facilitates-groundbreaking-study-of-wireless-body-area-networks/

Wednesday, March 24, 2010

Overcoming the Power Connudrum

I have written about the power consumption issue in earlier articles.  I now include a link to another article that discusses further positive developments in towards solving the power requirements problem inherent in remote patient care.  Here's the link to the article: Breakthroughs with Sensing in the Human Body By Dr Peter Harrop, Chairman, IDTechEx

The article discusses the following developments towards solving the power problem.  The two fundamental areas are:
  1.  Advancements in reducing the levels of power required for body sensor nets.  
  2. Methods for harvesting power: either from the wearer or from the environment.
Developments in power for portable and wearable devices are worth watching because the capabilities of remote patient care are limited primarily by power requirements.  Power requirements for pacemakers, ICDs and CRT(-D)s devices have by in large been met, that is, for those devices where the communications requirements are minimal.  However, as communications requirements increase, so will power consumption. And all indications are that data traffic requirements will increase, thus the need to both find more power and reduce power requirements will increase as well.


I shall continue to publish further developments in this area.

Tuesday, March 23, 2010

Development of BANS Expected to Accelerate

For those not in the "know," BANs is an acronym for Body Area Network.  It is a technology to capture and transmit body-related telemetry.  The National Institute of Standards and Technology (NIST) has granted the Center for Wireless Information Network Studies at Worcester Polytechnic Institute (WPI) Worcester, MA, $1.2 million over three years to advance BANs technology.  The research will focus on the propagation of radio waves around and through the human body. This could have real potential for the development of robust communications standards to enable medical devices to send and receive data and instructions over wireless networks.  This research is something to watch.

http://medicaldesign.com/engineering-prototyping/research-development/development-bans-expected-accelerate-032210/

Receiving a NIST grant is a significant achievement.  I was the Principal Investigator on a $2 million, two year grant to Rosetta-Wireless.  The NIST vetting process is arduous, but the grants generally fall into the seven figure range over two to three years.  I know that wireless data communication is an important area of interest to NIST particularly as it relates to medical applications, more specifically into the areas of wireless medical monitoring and remote programming.  I know that NIST has continued hopes for a medical application of the technology that my company, my research and development team created.

For those who have an interest in BANs, one of the technical problems is getting the data collected by BANs back to a location where medical professionals can review and evaluate it. And, if need be, make changes remotely in the operation of the implanted medical system (e. g., pacemaker, ICD, insulin pump, etc.).  If you review some of my earlier posts, you'll note that I have described methods to transport data and instructions over the commercial wireless network from and to a patient's implanted medical device. 

I shall continue to bring to light any further developments in BANs.

Thursday, November 12, 2009

Near Future: Remote Monitoring and Programming

This article will focus on a system of remote medical monitoring and remote programming as shown in the figure below.





I've discussed elements of this design in earlier posts, so I'll not go into detail about things that I have already covered.  This is particularly true with respect to the communications model wherein that involved a mobile and a central server.  The model I show in the figure is more "ready" for commercial deployment in that there multiple, redundant Central Servers in multiple locations.  This is in keeping with telecommunications philosophy for achieving near perfect connectivity through the backbone systems.

Another addition is that of WiMax (802.16 standard, for more information: WiMax Wikipedia) that is now being commercially deployed. This adds another viable data channel from which to send data.  As I mentioned before, the system that we developed was able to move traffic over one or all channels simultaneously, and traffic can be rerouted based on additional channel acquisition or loss. 

The important elements of this design for this discussion are at the ends.  Let's begin at the bottom of the diagram.  A patient could be implanted with multiple devices from multiple manufacturers.  In the diagram I show an insulin pump from Medtronic (http://www.medtronic.com/our-therapies/diabetes-management/index.htm), an ICD from St. Jude Medical (http://www.sjmprofessional.com/Products/US/ICD-Systems/Current-RF-ICD.aspx) and a pacemaker from Boston Scientific (http://www.bostonscientific.com/Device.bsci?page=HCP_Overview&navRelId=1000.1003&method=DevDetailHCP&id=10103841&pageDisclaimer=Disclaimer.ProductPage).  We could include devices from Biotronik (http://www.biotronik.com/portal/home) as well.  The mobile server in the diagram can communicate with all the devices and address and communicate with them individually.  (We have already proven this technology.)  We would assume that the data traffic from the devices would be bidirectional and that delivery is guaranteed and secure across the connection, to and from the analysis and device servers.

Without going into substantial detail, each device has a specific and separate device managing process running on the mobile server.  Using a "plug-in" architecture, each process communicates with the multi-layered, distributed system that moves data across the network.  Each device has a continuous, virtual connection with its counterpart Analysis and Device Management server to support both remote monitoring and remote programming.



The digital plaster (or plastic strips) would generate various types of monitoring data as shown in the diagram.  A single, multi-threaded process could manage any number of strips.  

It would be conceivable for the device managing processes to subscribe to any of the digital plaster processes and send the collected data from the patients to any or all of the Analysis and Device Management Servers. The digital plaster strips could collect data from any number of locations and a variety of types of data.  This would reduce the need for building the monitoring capabilities inside of the devices and conceivably provide the kind of the data the device could never provide.  

This system is primarily software-defined and is highly flexible and extensible. Furthermore, it provides the flexibility to incorporate a wide variety of current and future monitoring systems.  I'll continue to update this model as I find more products and technologies to include.

Tuesday, November 3, 2009

Sensor Technology: Digital Plaster and Stethoscope

Digital Plaster


Toumaz Technology has announced the clinical trials of what they are calling "digital plaster" that should enable caregivers to remotely monitor patients.  In the initial trial it would allow caregivers to remotely monitor patients when they are in the hospital.  However, conceivably patient could carry a mobile monitoring system like the one that I discussed in my article: Communication Model for Medical Devices.  

Here is a link the article on Digital Plaster: http://www.sciencecentric.com/news/article.php?q=09110342-digital-plaster-monitoring-vital-signs-undergoes-first-clinical-trials

Update:  Here's an image of digital plaster from a UK website.  This is to provide you with an image of the size and means of application of digital plaster.  It's a sensor placed into a standard plastic or cloth strip.  Simple to apply and it's disposable.  



For more information, here's the link: Imperial College, London, UK.  This is a 2007 article.  This is a good reference point to investigate the technology. 

Digital Stethoscope


Another development was the announcement at TEDMED of the digital ste.  Here's the link to the article: http://mobihealthnews.com/5142/tedmed-wireless-health-has-killed-the-stethoscope/.  This article discusses this and other new wireless medical devices that will enable patients to be remotely monitored from virtually anywhere.  Thus providing the capability to keep people out of hospitals or keep them for shorter periods of time.  Furthermore, these technologies have the capability of improving care while lowering costs.  Again I think it would be instructive to read my articles on mobile, wireless data communications:  1) Communication Model for Medical Devices and 2) New Communications Model for Medical Devices.