Showing posts with label Body Area Networks. Show all posts
Showing posts with label Body Area Networks. Show all posts

Tuesday, December 10, 2019

New Wearable Sensor Detects Gout and Other Medical Conditions

I just came across this article regarding a wearable sensor systems and thought that I would share it. This could be a component in a remote monitoring system. The sensor's information source is the person's sweat. "Sensor can pick up small concentrations of metabolites in sweat and provide readings over long periods of time." To turn this into a remote monitoring system, all that's required is a means to transmit the data over wireless. 

From the article:

The team’s goal is a sensor that lets doctors continuously monitor the condition of patients with illnesses such as cardiovascular disease, diabetes, and kidney disease, all of which put abnormal levels of nutrients or metabolites in the bloodstream. Patients would be better off if their physician knew more about their personal conditions and this method avoids tests that require needles and blood sampling.
“Such wearable sweat sensors could rapidly, continuously, and noninvasively capture changes in health at molecular levels,” Gao says. “They could make personalized monitoring, early diagnosis, and timely intervention possible.”

Monday, November 18, 2019

Apple Watch 5: Heart Monitoring Capabilities -- Afib

The Apple Watch 5 has a heart rhythm monitoring capability that is tuned to detecting the presence of atrial fibrillation, AKA, Afib. Apple categorically states that the watch is unable to detect a heart attack. (And by implication, the likelihood of a heart attack occurring within minutes or hours.)

You have to manually enable your heart monitoring system (Watch and iPhone) to detect Afib. This not part of the default configuration. Here's the link for setting it up: https://support.apple.com/en-us/HT208931#afib

Here's what Apple says about the capabilities of their system and note that it requires both the Apple Watch 5 and an iPhone: 

INDICATIONS FOR USE (NON-EU REGIONS)

The Irregular Rhythm Notification Feature is a software-only mobile medical application that is intended to be used with the Apple Watch. The feature analyzes pulse rate data to identify episodes of irregular heart rhythms suggestive of atrial fibrillation (AF) and provides a notification to the user. The feature is intended for over-the-counter (OTC) use. It is not intended to provide a notification on every episode of irregular rhythm suggestive of AF and the absence of a notification is not intended to indicate no disease process is present; rather the feature is intended to opportunistically surface a notification of possible AF when sufficient data are available for analysis. These data are only captured when the user is still. Along with the user’s risk factors, the feature can be used to supplement the decision for AF screening. The feature is not intended to replace traditional methods of diagnosis or treatment.

The feature has not been tested for and is not intended for use in people under 22 years of age. It is also not intended for use in individuals previously diagnosed with AF.

INTENDED PURPOSE (EU REGION)

Intended Use

The Irregular Rhythm Notification Feature (IRNF) is intended to pre-screen and notify the user of the presence of irregular rhythms suggestive of atrial fibrillation (AF). The feature can be used to supplement a clinician’s decision to screen for possible AF. The feature is intended for over-the-counter (OTC) use.

The feature has not been tested for and is not intended for use in people under 22 years of age. It is also not intended for use in individuals previously diagnosed with AF.

Indications

The feature is indicated to pre-screen for irregular rhythms suggestive of AF for anyone aged 22 years and over.


USING THE IRREGULAR RHYTHM NOTIFICATION FEATURE Set-Up/On-boarding


  • Open the Health app on your iPhone.
  • Navigate to “Heart”, then select “Irregular Rhythm Notifications”.
  • Follow the onscreen instructions.

Receiving a Notification

Once the feature is turned on, you will receive a notification if the feature identified a heart rhythm suggestive of AF and confirmed it on multiple readings.
If you have not been diagnosed with AF by a GP, you should discuss the notification with your doctor.

All data collected and analysed by the Irregular Rhythm Notification Feature is saved to the Health app on your iPhone. If you choose to, you can share that information by exporting your health data in the Health app.

SAFETY AND PERFORMANCE

In a study of 226 participants aged 22 years or older who had received an AF notification while wearing Apple Watch and subsequently wore an electrocardiogram (ECG) patch for approximately one week, 41.6% (94/226) had AF detected by ECG patch. During concurrent wear of Apple Watch and an ECG patch, 57/226 participants received an AF notification. Of those, 78.9% (45/57) showed concordant AF on the ECG patch and 98.2% (56/57) showed AF and other clinically relevant arrhythmias. A total of 370 irregular rhythm notifications with readable ECG patch data was received by the 57 participants. Of those 370 notifications, 322 (87.0%) were assessed to be AF, 47 (12.7%) were arrhythmias other than AF and 1 (0.3%) was sinus rhythm. These results demonstrate that, while in the majority of cases the notification will accurately represent the presence of AF, in some instances, a notification may indicate the presence of an arrhythmia other than AF. No serious device adverse effects were observed.

CAUTIONS

The Irregular Rhythm Notification Feature cannot detect heart attacks. If you ever experience chest pain, pressure, tightness or what you think is a heart attack, call emergency services.

The Irregular Rhythm Notification Feature is not constantly looking for AF and should not be relied on as a continuous monitor. This means the feature cannot detect all instances of AF and people with AF may not get a notification.


  • Not intended for use by individuals previously diagnosed with AF.
  • Notifications made by this feature are potential findings, not a complete diagnosis of cardiac conditions. All notifications should be reviewed by a medical professional for clinical decision making.
  • Apple does not guarantee that you are not experiencing an arrhythmia or other health conditions even in the absence of an irregular rhythm notification. You should notify your GP if you experience any changes to your health.
  • For best results, make sure your Apple Watch fits snugly on top of your wrist. The heart rate sensor should stay close to your skin.

From the information provided I am unable to determine how the Afib monitoring system detects Afib. It does seem use an additional capability beyond heart rate system, but from what little I can understand, it uses software running on either the watch and/or the iPhone and uses as input the data from the heart rate system.

I have no idea what algorithms the Apple heart monitoring system is using to detect atrial fibrillation (AF), but if you read the study above, you'll note that apparently, the Apple system has significant false positive rate. Walking through the study, to qualify as a subject for the study, you had to have had a positive indication of AF by the Apple system. That's the one clear message from the study. Another clear message is that both the Apple system and the AF patch can detect heart arrhythmia  other than AF, but what those were is unclear. Unfortunately the way the data is reported does not provide full clarity into the procedure and results. So there's not much more that I can comfortably conclude.

I feel comfortable stating that if you're wearing the Apple Watch and using the AF detection system and you get an AF indication, it's worth your time to get it checked out even knowing full well that the indication is more than likely to be a false positive.

However, high AF false positive rate of nearly 60% is concerning from the standpoint of those who have the Apple AF detection system activated and receive false positive indications. Information like this gets around and users may have tendency to ignore the AF indications when in fact they should be paying attention to them. To curb the possibility that someone ignores an accurately reported AF indication from the Apple system, it would behove Apple to include with the AF notification a check list displayed on the iPhone the walk the user through to determine if in fact this is an AF event.



Monday, January 28, 2019

Article: Year of Telehealth

Here's an article telling us what lots of us already have learned, that telehealth is an up a coming method of providing effective and cost-effective as well as continuous medical care where ever a patient may be. Here's the link to the article: https://www.beckershospitalreview.com/telehealth/dr-toby-cosgrove-2019-will-be-the-year-of-telehealth.html

Here's a quote from the article that I think is of interest:

"[Oakland, Calif.-based Kaiser Permanente] is seeing over 50 percent of their patients distantly," Dr. Cosgrove told CNBC.

What Cosgrove isn't telling us is how telehealth is being provided. Telehealth is pretty loosely defined. It can mean that patients have access to a health care provider through chat or the telephone. Or it can mean something more sophisticated such as continuous medical-device communication and automated monitoring. One way or another telehealth is clearly on the rise and will likely become the standard for providing care.

Wednesday, November 28, 2018

Careband: Keeping track of those with dementia

I was at an evening venture capitalist meeting on 13 November 2018. I'm not a venture capitalist but I have a few connections to this community and I periodically receive invitations to their meetings. Most of the time I pass on attending. I'm interested in science, mathematics and technology. VCs are interested in ways to make money. Nothing against them. We just live on different planes of existence.

However, I attended this meeting because I read the description of one of the companies doing a presentation, careband (http:www.careband.co).

careband

Careband provides a capability to track the location of people with dementia. This is a more difficult problem than you might imagine. In institutions, patients with dementia are known to wander away: from the institution, from their homes, from family members. The patients do not know where they are or how to return. Institutions who care for dementia patients frequently need to find their patients who have wandered away from the institution's grounds or to areas of the institution that caregivers do not expect that they would be able to wander. 

Thus there's a clear need to be able to keep contact track of dementia patients. To know where their location at all times and be notified when they've wandered off the grounds of the institution.  Here's a page from the careband.co website that summarizes the capabilities of their system.


The diagram above shows the elements of system for patients and customers/caregivers -- those responsible for caring for the dementia patient(s). Caregivers can see at a glance the current location of each patient. Each dementia patient wears a band about the size of a large wristwatch on the wrist that periodically sends a location related message to the network. All data is sent to careband's cloud server system. Patient location data is made accessible to the caregiver systems that are connected to the cloud server system.

The wrist bands connect to the Internet to the low-power communications system: LoraWAN. More information about this wireless data communications network is available here: https://lora-alliance.org/about-lorawan The LoraWAN network is a low-power, low-speed (0.3 kbps to 50 kbps) but long distance (up to 3 miles from an access point outside) and robust wireless communications system. 

The wristband also includes Bluetooth that is used to provide indoor location data. And an accelerometer has been included to provide information regarding whether the patient has moved his or her body during the reporting period. 

I am not familiar with all of the current capabilities of the careband.co system. However, I know that the wristband continually transmits to the cloud the following data:
  • Patient ID data
  • Transmission time 
  • Location data
  • Movement (whether or not the person has moved from the time of the last data transmission and the time of the current data transmission)
  • Battery charge level
How careband.co is currently analyzing is something of which I am presently unsure, but there are a number of pieces of information that can be derived from this relatively small amount of data. Here's what's possible:

  1. Current patient location
  2. Map of patient's activity and the distance covered over time
  3. Amount of time that the patient was moving
  4. Alarm initiation: should the patient stray away from the institution, the system can automatically notify the caregivers. (Boundaries should be able to be drawn on the display.)
  5. Trend and trend line analysis for patient activity time and distance covered. These could be indicators of the patient's cognitive health. Significant deviations from calculated trend lines could be indicators of a slip or improvement in a patient's cognitive and/or physical health.
  6. Suggest that the patient has removed the band from his or her wrist (when the patient appears not to have moved during normal activity time) or that the patient maybe in distress or died.
There could be more information that can derived from the wristband data that I have yet to think of. As I come up with additional thoughts regarding this, I shall post them.

Upgrades to the wristband could include pulse oximetry and pulse rate data. Again, there are other capabilities that could be added that I have yet to think of.

Since the transmission speed is so low, careband.co will likely need to develop a data compression system to effectively communicate this data back to the cloud server system. 

Careband.co is one more interesting product for remote medical monitoring. It's not designed for remote patient management largely because most patients will normally be closely supervised. However, it could be an aid to enable people with dementia to live for a longer time in their own homes. The benefits to both the patient and to society are massive. Six months to a few years of being able to live in one's own home would improve both the quality of life for people with dementia and significantly, dramatically reduce the cost of care.

I shall continue to monitor careband.co's progress. Stay tuned.

Careband.co plans on making their products available through medical device distributors. Their products are not yet commercially available. They are about to manufacture the wristband. Their wristband has been approved by the FCC. FDA approval is not required.  If you are interested in purchasing their product, please contact them at care band.co.

I should mention that careband.co is looking for investors. If you're interested in what careband.co is selling, please contact them directly using the URL listed above.

Wednesday, September 12, 2018

Apple Watch 4, Preview of Medical-Monitoring Features

Here's an article regarding the Apple Watch 4 and what are suppose to be built in medical monitoring features.

Here's the link: https://www.mobihealthnews.com/content/apple-watch-series-4-will-have-fda-cleared-ecg-fall-detection?mkt_tok=eyJpIjoiTkRVMk0yVmxNamsyWkRneiIsInQiOiJjWXRoaVpENmhJYlBRNFlzVVBYZ3hrc0VEVFdsYmNLUG1FQUIrQmcyMnVHMTRwSnBORDh6cW1Da1kzbjJqS2JxbHcydjRuTk0zaG5qRzBvMFR1MmdiMmZyNGhyXC9SZmYyYkduaSs5R0tyRG85TXkrMHVxTnFFYXFrVE5jWHpIRWwifQ%3D%3D

Here's the list of new medically-related features:


  1. ECG (30 second rhythm "strip")
  2. A-Fib detection (of course, if you're paying attention and you know the symptoms, you'll probably know sooner than the watch.)
  3. Fall detection (as in when the person falls, the watch detects that it has occurred)
All information is sent back to Apple Health Records where all this information be accessible to a physician/cardiologist.

Apple has received FDA approval, according to the article. 

I'm not going to comment until I've had a little more time to study the Apple Watch 4 except to say, if you can detect A-Fib, then why not V-Fib? V-Fib is much more life threatening. Also too, if you've got a 30 second rhythm snap shot, you can do a lot with that. 

I'll touch on these and other questions regarding the Apple Watch 4 and Apple's effort to product a remote medical monitoring device and medical monitoring system later. 


Tuesday, July 24, 2018

Adhesives: Part of the Future for the Remote Monitoring Sensors?

I just ran across this article a few minutes ago. It's a serious article published in Machine Design. Here's the link: http://www.machinedesign.com/mechanical/adhesives-enabling-future-wearable-medical-devices?NL=MD-005&Issue=MD-005_20180724_MD-005_524&sfvc4enews=42&cl=article_1_b&utm_rid=CPG05000003255032&utm_campaign=18775&utm_medium=email&elq2=5b76b40ea8f44d76b2b883c5c09f23fe

It's an extremely readable article and what's being described has in my opinion real applicability in the future of medical sensors. Adhesive, "band-aid" or strip sensors development applies to both the fitness set as well as to remotely monitored patients.

Transmitting data to monitoring systems and people will likely require an intermediate device such as a smart phone. I suspect that the real issues and hurdles will likely revolve around digital communications issues and standardization. Having worked most of my life in the communications domain, communications issues can be successfully overcome.

Here are a few quotes from the article:

Device manufacturers are taking steps to create medical devices that are smaller, lighter, and less invasive. Whether they’re adhering device components together or sticking a device to skin, adhesives are uniquely bonded to a device’s success.

Both consumers and patients want wearable devices to be smaller, lighter and less cumbersome to use for seamless integration into their everyday lives. The design process can get challenging when devices must maintain accurate sensing capabilities, but also reduce friction to ensure precise data collection. Adhesives can help to keep friction to a minimum by being breathable and maintaining a low profile. In addition, options with flex electronics, as well as addressing battery implications and electromagnetic interference, provide opportunities for advancement.

Adhesive wear time is a crucial consideration when designing a wearable device, impacting overall resilience and durability, as well as how often the user will need to change their device. 

______________

I should mention that by the looks of things, it appears to me that 3M maybe behind the article. Nevertheless, I think that considering adhesives in the research, design and development process of a bio-sensor is worth your time. 


Tuesday, March 24, 2015

Benefits of Remote Monitoring & Mayo Clinic Announcement

I've been arguing for some time that remote monitoring can not only lower medical costs, but it show itself to be of benefit to the patient as well. Here's an article that not only shows that remote monitoring can be of benefit to the patient, but to the physician as well.

Remote monitoring can not only provide better and more data ... that can lead to better analysis and conclusions. It can provide that data to the physician before the patient comes in for a visit. Furthermore, if an adverse medical event occurs, that data is captured and available to the attending health care providers. Admittedly the patient would have needed to have been wearing the monitoring device at the time, but if the person was wearing the monitoring device that information would be available.

Here's the link to the article: http://www.healthcareitnews.com/news/remote-patient-monitoring-steps-toward-new-era

Here are a few quotes from the article that I found interesting ...

... if you spend $100 a month to monitor patients remotely – over a year it would cost much less then what you would pay if they have to come back to the hospital.


[T]here are two waves of activity. The more traditional top down wave extends the reach of hospitals with FDA approved medical devices that are deployed out in the home by providers by doctors to keep track of these patients.
There is also an increasing consumer wave where people are going out and buying the sensors and devices on their own and tracking their fitness and health and bringing that information to their healthcare providers.
=== I find this quote interesting in light of the Apple Watch and other similar devices ======
Some physicians, Kleinberg asserted, don’t need and don’t want that data from the patient and claim that they don't have a place to put the data and they don't have time to look at it.
=== Actually, machines can monitor this data on a continual basis. The machines can alert physicians as needed and provide summaries. Physicians need not review raw data. ======
"There's a push back to this consumer-up bottom-up wave. But over time I think we're going to see that the sensors and the data that’s coming from these devices is going to have more and more value and providers are going to put more faith in it," said Kleinberg. "They're going to look at it and make some sense of it and part of the way they are going to do that is if they have more confidence about that data."
=== I think the last sentence may be one of the most significant in the article. Confidence in the data and automated analysis will build and become mainstream. And I think that cost considerations will be a factor. =====

Announcement Title: Mayo Clinic To Develop Wireless Sensors To Treat Obesity

I found this quite interesting when I came across it. The sensors are far from being developed but I thought it worth posting the announcement link.


Here's a quote from the announcement.

The goal is to produce the first wearable patch sensor – the size of a bandage – that is wireless, disposable, and can remotely monitor patient movements via smartphone. This new technology would simplify tracking with greater accuracy of patients and clinical trial subjects for whom a certain level of activity is prescribed to achieve their goals.

Friday, April 9, 2010

Article: Wireless Remote Monitoring Prevents Complications of Chronic Diseases

An interesting article about the benefits of remote monitoring in the care of patients with chronic diseases from the Press of Atlantic City, 8 March 2010.  Here's the link to the article:  http://www.pressofatlanticcity.com/life/monday_health/article_1333e585-e3a6-5ba8-a411-75530f6b63cf.html

Quotes from the article:
Improving management
By early 2012, Americans will use about 15 million wireless health-monitoring devices, according to a forecast from ABI Research, which tracks mobile-technology trends. The mobile health market is projected to more than triple to $9.6 billion in 2012 from $2.7 billion in 2007, according to study from Kalorama Information Inc
[T]he first pilot project in the nation to assess whether the use of remote digital devices with data sent over the Internet to a doctor's office improved management of multiple chronic diseases - diabetes, heart disease and high blood pressure, also known as hypertension. 
Diabetics and hypertensive patients increased the number of days between appointments by 71 percent and 26 percent respectively ...
"One of the great promises of wireless (health) is making it a part of the patient's daily life, not an interruption to what they're doing every day," ...
From personal experience I believe the last sentence I quoted is among the most important in the article.  The entire process should be so smooth, so automated, so uncomplicated and unintrusive that the patient's life is uninterrupted and that the data is seamlessly collected and sent to the patient's caregiver.

Two other items to note.  The first is a brief discussion of the sensors connected to the patient's body.  They mention band-aid size electrodes.  I am not sure if these are the "digital plaster" that I've discussed in an earlier article.  http://medicalremoteprogramming.blogspot.com/2009/11/digital-plaster.html
Or something else.  I do not know, but it would be interesting to find out.  If I have any informational, I'll post it.  If you have any information, please enlighten us with a comment.

The second issue of note is the discussion in the article regarding payment, and who will do it.  Given the convoluted nature of our system of payments, this will be the most difficult issue to resolve, I believe.  It's ironic considering that remote monitoring saves money.   I think the technical issues will be minor in comparison.  I hope I am proved wrong.

Remote Monitoring/Programming and Diabetes Management

Diabetes management is a personal area of concern for me.  No, I'm not diabetic.  However, my late mother-in-law was.  She had Type II diabetes; however, she was not overweight.  She died of a sudden cardiac arrest that was a direct result of her diabetes.  Although she did a great deal to manage her diabetes, her insulin would swing widely.  Those wide swings damaged her heart muscles leading to a cardiac arrest.  I can't help but believe if remote monitoring had been available to her, that she should would be alive today.

In the past my primary topical area has been cardiac rhythm management.  I plan to broaden my focus. Diabetes management using remote monitoring and even remote programming will be a topical area of increasing focus in this blog.  In later weeks I plan to branch out into COPD.

For those of you who have domain expertise in diabetes management and COPD, I would appreciate your comments.  You can make your comments in the comment area of this blog or email them to me.  Whatever way you feel the most comfortable.

To get things started, I have three links that I would like share.  The first link is a blog article titled, "Finding patterns in diabetes treatment may be key for telemedicine."  The article is a brief discussion about a presentation by Dr. David Klonoff of Mills-Peninsula Health Center and UC San Francisco.  His focus was on Type I diabetics, however, I believe what he discussed has significant implications for Type II diabetics as well.  Dr. Klonoff's interest is technology "...for automatic measurement of blood glucose, automatic dose calculation, and automatic insulin delivery."  From the article ...
For this ideal scenario to develop, five technologies need to be solved, and Klonoff sees printed electronics being used in every one:
  • Self-monitoring of blood glucose
  • Continuous (and ultimately non-invasive) monitoring of blood glucose
  • Alternate routes for delivering insulin rather than needles, such as micro-needles. (Klonoff referred to work being done at UC Berkeley; I saw some demonstrated at the University College Cork/Ireland (PDF poster here) although using traditional semiconductors, not printed electronics.)
  • Artificial pancreas
  • Telemedicine
 In the quotation above, there are several links.  The one of greatest interest to me and to this forum, is the "non-invasive" link.  This will link you to an article titled, "The Search for Noninvasive Glucose Technology That Works: Where It Stands Now".


The article is a discussion of a need for a means for non-invasive monitoring of glucose levels.  The capability of having a non-invasive means of monitoring glucose levels would go a long ways towards supporting automatic, remote monitoring of glucose levels.  This could be an extension of the body area networks work (BANs).  So if anyone has any ideas in this area, apparently this is a wide open area for invention.

Finally, I want to provide a link to a brief report by the Whittier Institute of Diabetes.  The report is undated, but a brief review of the document's properties indicated that it was created in 2004.  It's not as recent as I would like, however, I believe that it's findings are relevant.  In summary, it showed that even relatively crude means for monitoring diabetes could lead to some positive outcomes at relatively low cost. 

 

Saturday, March 27, 2010

A more complete article on the NIST Grant fund BANS research

I have added a more complete article without comment regarding the NIST funded study to advance the capabilities of Body Area Networks (BANS).  It appears to be largely taken from the press-release from Worcester Polytechnic Institute.  

Here's the link: http://itisinteresting.me/2010/03/1-2-million-award-from-nist-facilitates-groundbreaking-study-of-wireless-body-area-networks/