Showing posts with label Bioelectricity. Show all posts
Showing posts with label Bioelectricity. Show all posts

Saturday, July 21, 2018

The Low-Power Mantra Rings Louder with Next-Gen Medical Wearables

My interest in remote monitoring and the focus of this blog is primarily on wearable or implanted devices that support chronically ill or elderly patients. I link remote monitoring with remote patient management. I sometimes drift into the realm of wearable fitness devices because of the similarity in technology. However I think what really differentiates wearable fitness devices and medical remote monitoring devices is reliability, particularly when it comes to insuring that medical remote monitoring devices have a reliable source of power -- constant and steady.

Reliable and constant power is a major concern to any engineer who's designing a medical monitoring device. So this article should be of interest to those involved with the design, development and testing of medical remote monitoring devices. 


Here's a quote from the conclusion of the article: 

"Wearable devices represent the current and future wave in medical care. They hold promise in multiple areas from real-time patient monitoring to drug delivery, but the small space available for a battery imposes strict constraints on the designer, particularly in the area of power consumption."

Harvesting Power

When I was the principal investigator and Chief Technologist of a company focused on research and development of mobile and wearable devices, we were extremely concerned with power and reliable and constant sources for power for mobile devices. One of the ideas we began to pioneer was the ability to harvest power from the environment, from bioelectric sources such as people. I mention this because the article discusses this issue and some of the promising technologies and those interested in  this area should find this section interesting.

Wednesday, March 24, 2010

Overcoming the Power Connudrum

I have written about the power consumption issue in earlier articles.  I now include a link to another article that discusses further positive developments in towards solving the power requirements problem inherent in remote patient care.  Here's the link to the article: Breakthroughs with Sensing in the Human Body By Dr Peter Harrop, Chairman, IDTechEx

The article discusses the following developments towards solving the power problem.  The two fundamental areas are:
  1.  Advancements in reducing the levels of power required for body sensor nets.  
  2. Methods for harvesting power: either from the wearer or from the environment.
Developments in power for portable and wearable devices are worth watching because the capabilities of remote patient care are limited primarily by power requirements.  Power requirements for pacemakers, ICDs and CRT(-D)s devices have by in large been met, that is, for those devices where the communications requirements are minimal.  However, as communications requirements increase, so will power consumption. And all indications are that data traffic requirements will increase, thus the need to both find more power and reduce power requirements will increase as well.


I shall continue to publish further developments in this area.

Tuesday, December 15, 2009

Revamping the Revenue Generation Model in the Medical Device Industry

My fourth posting on this blog on 29 September 2009 was part of a multi-part examination of Medtronic's remote programming patent (US Patent # 7,565,197 that was granted in 21 July 2009).  I suggested that the patent patent implied two directions in the development of medical devices:
  1. The development of a single, common hardware platform based on a generalized processor, similar to TI's low power processor. (Add urls).
  2. Medtronic device capabilities would be defined primarily by software.  Furthermore, the patent defines a capability for software to be downloaded to a device, thus defining the capability for updating the software on the device.
We've learned that there are technologies in development that could significantly increase the battery life of devices: maybe at some point eliminating the need for battery replacement all together.

Today, physicians, hospitals and device manufacturers receive the bulk of their payment when a device is implanted or replaced.  Thus, the current business model of device manufacturers relies on primarily on product such as an ICD or CRT and leads.


However, the Medtronic patent suggests the possibility, maybe even the likelihood of strategic shift from a product to a licensing business model. This would suggest a business similar to software companies who charge a flat or yearly fee for the use of software.  Instead of a replacement, the patient receives a software upgrade and the device company receives payment for the software upgrade.  This is one step removed from a pure product to a service-oriented model, but it still treats the software as a product.  Nevertheless, it provides flexibility to the medical device company in that revenue comes less tied to the sale of objects, and more tied to the services provided to the customer.


An even more innovative approach and more in-line with a service-oriented business model would be to have the software redefine the capabilities of the device itself while implanted in the patient.  For example, upgrade an ICD to a CRT-D by changing software.  I do not know the technical, implantation or leads-related issues of doing this, however, from a software standpoint, there should be nothing stopping a device manufacturer who has taken the common hardware design approach.

A pure service-oriented model would change on the basis for the services provided.  Since I'm a technologist and not an MBA who has worked in the device industry for decades, I cannot define all the possible revenue-producing services medical devices with remote monitoring and remote programming could provide device companies.  I can say that the services that medical device companies can provide medical care providers and their patients is becoming less and less tied to the devices themselves. So a more service-oriented perspective in the medical device industry seems warranted.  

It seems apparent that for medical device companies to expand their services and patient-care and management capabilities with information-based services over the communications infrastructure, they are going to have to change the way they receive revenue.  The current business model and means of generating revenue does not provide incentives to companies to expand into information based services given the current product-based revenue model currently in use.  I suspect that in a relatively short time, Medtronic will propose a new revenue model.  I shall be watching for the signs.

Monday, October 12, 2009

Harvest Bioelectricity to Power Implants?

Do you remember the movie The Matrix? There's an important scene where Morpheus tells Neo that the people connected to the matrix are nothing more than batteries to power the machines. The matrix exists to harvest biologically generated power.

I cannot state that everything in the movie's script was accurate.  However, I can state with confidence that biological organisms generate electrical power.  The question is whether that electrical power can be harvested?  The matrix could do it, but anything can happen in the movies.  

I recently came across a new start-up company that has licensed technology from the University of Colorado that will allow implanted devices to harvest electrical power from their environment, the human body.  The company is called Biotricity Medical Inc. (www.biotricitymedical.com) and they're headquartered in Hopkinton, Massachusetts.  Here's the announcement as printed in The Tech Transfer Blog:

The University of Colorado at Boulder (CU-Boulder) has executed an option agreement with Biotricity Medical Inc. to develop technology for implantable biogenerators, which would provide a potentially inexhaustible power supply to implanted medical devices such as pacemakers and insulin pumps. The underlying technology was developed in the lab of Simon Rock Levinson, professor of physiology and biophysics at the University of Colorado School of Medicine. The company’s first planned product, EpiVolt, is a tiny, implantable biogenerator that will provide power indefinitely to devices such as pacemakers, insulin pumps, cochlear implants, artificial retinas, and vagal nerve stimulators. The device is composed of living electricity-generating cells that use the body’s natural chemicals and processes to create electric power. “It’s an inexhaustible source of power that will be much smaller than the batteries it will replace,” Levinson says. “This will allow the EpiVolt to be permanently implanted in very small spaces along with the device that it powers, without the need for long connecting wires running through the body to a remote battery power source."

The question is whether or not this will work.  This technology does seem to be worth watching.

As I had mentioned in an earlier article, limited power was the intractable problem that we faced when I worked for Rosetta-Wireless.  We had overcome of variety of significant problems and built a software system with a "bullet-proof" communications system and a variety of other capabilities.  The remaining problem was powering the mobile server.  

The fundamental problems that we faced several years ago have largely been solved by developments in battery and processor technology over the past few years.  That experience taught me a great deal about coming up with different methods for powering a mobile system. We attempted to devise methods that would enable us to harvest power from the environment to supplement the battery.  Biotricity's method for harvesting power won't have solved the power problems for Rosetta-Wireless, but it could provide the additional power demands required by sophisticated, wireless medical implants. 
 
The next post will discuss the specifics for creating a secure and robust connection over wireless.