Saturday, April 17, 2010

Article: Investments in Real Time Medical Monitoring

This is an article targeted to the investment community regarding investment in real time medical monitoring.  I do not endorse anything in this article.  However I do find it interesting.  I do not know the track record of this publication.  Nevertheless, here a link to the article: http://www.onemedplace.com/blog/archives/4878

Article: Initiation of a Telemonitoring Study of Heart Failure, COPD and Diabetes Patients

A study will be performed by researchers from Case Western Reserve University and Cleveland State University with patients suffering from heart failure, diabetes and COPD.  The objective of the study will be to determine how effective remote monitoring is with maintaining the health of these patients and with keeping them out of the hospital.

Here's a link to a report on this study: http://www.physorg.com/news190634143.html 

Additional Resources

COPD 

 The Complete Guide to Understanding and Living with COPD: From A COPDer's Perspective 

COPD For Dummies 

Diabetes

Diabetes For Dummies (For Dummies (Health & Fitness)) 

Tell Me What to Eat If I Have Diabetes: Nutrition You Can Live With 

The Official Pocket Guide to Diabetic Exchanges 

Heart Failure

The Cleveland Clinic Guide to Heart Failure (Cleveland Clinic Guides)


Manual of Heart Failure Management

Friday, April 16, 2010

Medtronic Remote Monitoring Study: CONNECT

At the American College of Cardiology 59th annual conference George H. Crossley, MD presented evidence that cardiac patient from remote monitoring (one scheduled in-office visit per year with remote monitoring) verses standard in-office care (four in-office visits per year) cuts the time between the time a cardiac or device related event occurs and when a treatment decision is made.

The title of the study: "The clinical evaluation of the remote notification to reduce time to clinical decision (CONNECT) Trial: The value of remote monitoring."

I present a summary of the method and the results of the study gleaned from the slides presented by Dr. Crossley at the conference.

Hypothesis

Tested hypothesis: Remote monitoring with automatic clinician notifications reduces the time from a cardiac or device event to a clinical decision.

Additionally investigated were rates utilization of the health care system including hospitalization and between treatment groups.

Method

Study participants:  1997 newly implanted CRT-D and DR-ICD patients from 136 US centers were randomly assigned to one of two groups. The first group had 1014 patients assigned to the remotely monitored group and the second had 983 patients assigned to the standard in-office care group. The patients were reasonably well matched for age and gender characteristics.  (A procedure similar to the Biotronik TRUST studies.)

The patients were followed for 12 months.  (On first reading, I found the the time relatively short in that I would not expect enough differentiating events would occur during that time.  However, on further reading, I believe my first impression was incorrect.)

Findings

Time from Event to Clinical Decision

The median time (used nonparametric inferential statistics for the analysis) from the cardiac or device event to clinical decision was 4.6 days in the remote group and 22 days in the in office group. This difference was significant.  The remote group involved 172 patient while the in-office group involved 145 patients.

The cardiac/device events included:
  • Atrial Tachycardia/Fibrillation (AT/AF) for 12 hours or more
  • Fast Ventricular rate. Of at least 120 beats per minute during at least a 6 hour AT/AFT event
  • At least two shocks delivered in an episode
  • Lead impedance out of range
  • All therapies in a specific zone were exhausted for an episode
  • Ventricular Fibrillation detection/therapy off
  • Low battery
Total number of events Remote group: 575 and In-office group: 391.  The slides show the breakdowns.

Office Visits

The number of office visits per patient reported are shown below.
                        Scheduled     Unscheduled      All office
Remote group:     1.68              2.24              3.92
In-office group:    4.33              1.94              6.27

The TRUST studies showed a slight increase of more unscheduled visits for the remote group. However, given the nature of the study and that remotely monitored patients would receive only one in-office visit per year, it's remarkable how similar the numbers between the two groups are.

Utilization of the Health Care System

Number of incidents where patients used the health care system show virtually no difference, hospitalization or emergency room. 

However, a remarkable difference was the significant difference in length of stay when there was a hospitalization. The remote group had a mean hospital stay of 3.3 days while the in-office group was 4.0 days with an estimated savings per hospitalization of $1659.

Conclusion

The CONNECT and (Biotronik) TRUST studies show clear benefits from a number of standpoints for remote monitoring.  In addition, the CONNECT study showed clear cost and hospital resource utilization benefits from remote monitoring in that hospitalized patients had shorter stays indicating that they were in better shape than patients in the in-office group when admitted to the hospital.  Quick responses seem to lead to better outcomes as well as cost reductions.


Reader Article: Controlling Glucose Level to Prevent Diabetes

 Here's something I have been wishing for ... a guest article authored by one of my readers.  If you have something that you would want me to publish in this blog, by all means, please send it and if I think it has technical merit and seems appropriate, I shall publish it.  


This article is written by Kristina Ridley who writes for the diabetes blood glucose  blog. (http://www.diabetesmeters.org/)This is her personal hobby-blog that focuses on healthy eating and tips to measure blood glucose levels at home to help people understand early diabetes symptoms.  

This article may have bearing on remote monitoring technology for diabetes in the what people consume has likely impact on glucose and insulin levels.  I know that heart failure patients (whom I understand are often diabetic) can remotely report to caregivers their weight, blood pressures, etc.  I would seem reasonable that diabetics could report their food and fluids intake for remote monitoring by their caregivers. 

I am particularly interested in Kristina's last section, "Too Much Control."  My experience in cardiac rhythm management suggest close monitoring and control are strong positives.  I hope that Kristina or someone else could write a rejoinder to this section.


Here is Kristina's unedited article:

Here’s a Quick Way to Control Glucose Level to Prevent Diabetes
 

Our pancreas is affected by diabetes – specifically, Type 2.Our body contains glucose found in the blood stream, which it gets from the sugar in food. Our body uses the glucose, but only when it goes into our blood cells and the insulin released by our pancreas converts it. Insulin production and utilization is difficult for someone who lives with Type 2 diabetes. There is a lot of glucose in the body, but your cells cannot locate them.

The American Diabetes Association has become very important when it comes to gathering critical information about this medical condition. With approximately 23.6 million citizens living with diabetes, America is an extremely unhealthy country. Over 90% of all patients with diabetes have Type 2.Most diabetics tend to be overweight and have relatives with the same condition. Too much glucose can cause serious, irreparable damage to internal organs and to the overall nervous system.

Diabetes and Your Life

If you have Type 2 diabetes, you need to live in a healthy manner. Living healthy and engaging in healthy practices will affect you tremendously. Two common examples of healthy routines include exercising and consuming healthy foods. Making sure that your glucose levels stay in the recommended range translates into being able to avoid complications in your health. A finger prick test is a common and reliable way to monitor your body’s blood glucose levels. 
 
This test, according to physicians, is sufficient enough for glucose monitoring like the HbA1c test. The amount of glycated hemoglobin in your blood is determined by this HbA1c test, aside from it alerting you if you reach a high glucose level. Results of these A1c tests show that people with diabetes are at a seven percent level. The CDC reports that if one maintains their a1c levels at seven percent, they could reduce the possibility of risks as high up as forty percent.

Too Much Control 

Recently, there have been medical studies that seem to indicate that maintaining A1c levels below 7% may be a bad idea after all. One of these studies, conducted at the Lancet and Swedish Medical Center in Seattle, has found that people who have median levels may be at a far greater risk of death, especially for those taking insulin. However, other tests have indicated that A1c levels of 7 percent is still perfectly healthy. Matt Davies, An accredited Endocrinologist, has stated that maintaining a 7% A1c level is healthy according to recent studies, but that physicians should always take the individual patient's history into account prior to planning treatment.
 

Kristina provides diabetic recipes in here blog.  In addition, I have provided a link to Amazon that will initiate a search for diabetic cookbooks.
Search Amazon.com for diabetic cookbook

Why the Moniker "RemoteProgrammerGuru?"

For those who have wondered ... there is a story behind why I use the moniker, "RemoteProgrammerGuru."  Any identity that has as part of the name, "guru" could be considered more than a little ostentations.  Here's the definition as provided by Wikipedia:http://en.wikipedia.org/wiki/Guru.

The definition describes someone with "supreme knowledge."  Fortunately for me, the term in India is synomous with "teacher."  For me, the "term" teacher was more appropriate and the role of a teacher came as a surprise.

I was part of a project where remote programming was the technical centerpiece of a proposed solution.  Frankly, I was new to remote programming for medical devices ... as are most.  However, I have a rich telecommunications background including expertise in wireless communications.  (I was the principal investigator on two federally funded telecommunications research grants.)  I know the technologies and I know how things work. 

As it turned out, I knew more about telecommunications than my colleagues who had been working in remote programming for longer than I ... much more.  And I started teaching them, about communications and about remote programming and necessary processes to insure communication integrity.  In effect, I became a "guru," a teacher.

Finally, since remote programming when designed and implimented correctly, involves sophisticated monitoring, I decided to incorporate the term "remote programmer" to represent someone who informs people about remote monitoring and programming.  Thus the moniker, "RemoteProgrammerGuru" was created.

Friday, April 9, 2010

Announcement: Biotronik has MRI Conditional Pacemaker Approved in Europe

Announcement that Biotronik has gained European approval for an MRI conditional pacemaker and leads.  Here's a link to the announcement from Business Wire:
http://www.businesswire.com/portal/site/home/permalink/?ndmViewId=news_view&newsId=20100407006972&newsLang=en

I have worked on the usability issues related to providing MRI conditional pacemakers and leads.  Without disclosing too much, my work related to MRI conditional pacemakers and leads got me interested in remote monitoring and remote programming.  So, for me there's a link between MRI conditional pacemakers and leads, and remote monitoring and programming.

Article: Updates to the Development of Medical Body Area Networks (MBANS)

Mobihealth News has published an article indicating that Philips is interested in a 10MHz spectrum dedicated to MBANS.  Here's the link to the article:
http://mobihealthnews.com/7178/philips-suggests-dedicated-mhealth-spectrum/

Mobihealth suggests that Philips is taking a different approach to MBANs than GE who wants 40Mhz of spectrum dedicated to MBANs.  The GE is interested in MBANs that would be used in hospitals.  Philips is interested in the deployment of MBANs to the field, and that Philips would produce consumer and not medical grade products.  I am not sure how this could work in the US.  However, this development is worth continuing attention.

Article: Wireless Remote Monitoring Prevents Complications of Chronic Diseases

An interesting article about the benefits of remote monitoring in the care of patients with chronic diseases from the Press of Atlantic City, 8 March 2010.  Here's the link to the article:  http://www.pressofatlanticcity.com/life/monday_health/article_1333e585-e3a6-5ba8-a411-75530f6b63cf.html

Quotes from the article:
Improving management
By early 2012, Americans will use about 15 million wireless health-monitoring devices, according to a forecast from ABI Research, which tracks mobile-technology trends. The mobile health market is projected to more than triple to $9.6 billion in 2012 from $2.7 billion in 2007, according to study from Kalorama Information Inc
[T]he first pilot project in the nation to assess whether the use of remote digital devices with data sent over the Internet to a doctor's office improved management of multiple chronic diseases - diabetes, heart disease and high blood pressure, also known as hypertension. 
Diabetics and hypertensive patients increased the number of days between appointments by 71 percent and 26 percent respectively ...
"One of the great promises of wireless (health) is making it a part of the patient's daily life, not an interruption to what they're doing every day," ...
From personal experience I believe the last sentence I quoted is among the most important in the article.  The entire process should be so smooth, so automated, so uncomplicated and unintrusive that the patient's life is uninterrupted and that the data is seamlessly collected and sent to the patient's caregiver.

Two other items to note.  The first is a brief discussion of the sensors connected to the patient's body.  They mention band-aid size electrodes.  I am not sure if these are the "digital plaster" that I've discussed in an earlier article.  http://medicalremoteprogramming.blogspot.com/2009/11/digital-plaster.html
Or something else.  I do not know, but it would be interesting to find out.  If I have any informational, I'll post it.  If you have any information, please enlighten us with a comment.

The second issue of note is the discussion in the article regarding payment, and who will do it.  Given the convoluted nature of our system of payments, this will be the most difficult issue to resolve, I believe.  It's ironic considering that remote monitoring saves money.   I think the technical issues will be minor in comparison.  I hope I am proved wrong.

Remote Monitoring/Programming and Diabetes Management

Diabetes management is a personal area of concern for me.  No, I'm not diabetic.  However, my late mother-in-law was.  She had Type II diabetes; however, she was not overweight.  She died of a sudden cardiac arrest that was a direct result of her diabetes.  Although she did a great deal to manage her diabetes, her insulin would swing widely.  Those wide swings damaged her heart muscles leading to a cardiac arrest.  I can't help but believe if remote monitoring had been available to her, that she should would be alive today.

In the past my primary topical area has been cardiac rhythm management.  I plan to broaden my focus. Diabetes management using remote monitoring and even remote programming will be a topical area of increasing focus in this blog.  In later weeks I plan to branch out into COPD.

For those of you who have domain expertise in diabetes management and COPD, I would appreciate your comments.  You can make your comments in the comment area of this blog or email them to me.  Whatever way you feel the most comfortable.

To get things started, I have three links that I would like share.  The first link is a blog article titled, "Finding patterns in diabetes treatment may be key for telemedicine."  The article is a brief discussion about a presentation by Dr. David Klonoff of Mills-Peninsula Health Center and UC San Francisco.  His focus was on Type I diabetics, however, I believe what he discussed has significant implications for Type II diabetics as well.  Dr. Klonoff's interest is technology "...for automatic measurement of blood glucose, automatic dose calculation, and automatic insulin delivery."  From the article ...
For this ideal scenario to develop, five technologies need to be solved, and Klonoff sees printed electronics being used in every one:
  • Self-monitoring of blood glucose
  • Continuous (and ultimately non-invasive) monitoring of blood glucose
  • Alternate routes for delivering insulin rather than needles, such as micro-needles. (Klonoff referred to work being done at UC Berkeley; I saw some demonstrated at the University College Cork/Ireland (PDF poster here) although using traditional semiconductors, not printed electronics.)
  • Artificial pancreas
  • Telemedicine
 In the quotation above, there are several links.  The one of greatest interest to me and to this forum, is the "non-invasive" link.  This will link you to an article titled, "The Search for Noninvasive Glucose Technology That Works: Where It Stands Now".


The article is a discussion of a need for a means for non-invasive monitoring of glucose levels.  The capability of having a non-invasive means of monitoring glucose levels would go a long ways towards supporting automatic, remote monitoring of glucose levels.  This could be an extension of the body area networks work (BANs).  So if anyone has any ideas in this area, apparently this is a wide open area for invention.

Finally, I want to provide a link to a brief report by the Whittier Institute of Diabetes.  The report is undated, but a brief review of the document's properties indicated that it was created in 2004.  It's not as recent as I would like, however, I believe that it's findings are relevant.  In summary, it showed that even relatively crude means for monitoring diabetes could lead to some positive outcomes at relatively low cost. 

 

Thursday, April 8, 2010

More on Knowing Thy Target User Population

Before moving forward into product development, I want to elaborate on the issues in my first two articles. This article elaborates on the importance of knowing the target population and ways to gather that information.  

The next article will discuss  I have had some recent experiences that reinforced that importance of defining and clearing understanding the targeted user population. And the importance of fully understanding and documenting what those members of the user population do and the environment(s) wherein they live and work.

Before proceeding any further, please review my previous article on understanding your target population. The link to the article is below:

http://medicalremoteprogramming.blogspot.com/2010/03/know-thy-target-population.html

HE75 clearly emphasizes the importance of understanding your target population.   The standard instructs that companies who develop medical devices should:
  1. Know their targeted user population
  2. Involve users early and often
  3. Accommodate user characteristics and capabilities. And in order to do this, one must first know what they are.

The information gathered about a target population should enable one to clearly define the qualities and characteristics of that population.  This can be particularly important when designing medical devices, particularly when those devices are targeted to patients. 

I have seen organizations a company, organizations that include program management, marketing and engineering assume that they know the characteristics of the targeted population.  Once the product is deployed, the company comes to a rude awakening and learns that their assumptions were often times false.  Neither the company nor the targeted user population(s) benefit from such a failure.

Methods for Gathering Target Population Data

The target population data is the most elemental data in the product development process.  All the descriptions about the targeted user population, their characteristics, culture and capabilities originate from this step in the research and development process.

So, how is this crucial data gathered? First, a confession ... the amount of work I have performed at this stage of the process has been limited.  My training is in cognitive psychology and computer science.  Most often I have been the recipient of such information about the targeted user population.  I have used the results of this first step as a means for recruiting subjects in my usability experiments and evaluations.  The training that is most suited to gathering this kind of data is anthropology and sociology.  The process of collecting target user population data draws on ethnographic and participant observation research methodologies.  The research can be observational.  It can be based on questionnaires administered orally or in writing.  It can be structured interview.  It can participant observation where the observer becomes participates in the activities of the target population.  It can be a combination of a variety of methods and include methods not listed above.  

The objective is the development well-grounded description that captures the important, defining characteristics of the target population.  The description can be provided in variety of ways, verbal or graphic.  The description should use the clearest and most appropriate methods available to covey that information to the members of the product development organizations.

Interestingly enough, I have used the data gathering methods I listed above.  However, I used those methods to collect data for the second step, Knowing what the user does and where they do it.  In other words, to gather task and environmental data.

Potential Costs for Failure to Correctly Define the Target User Population

Consider the following scenario ... that I collect task and environmental data about the wrong population, about a population that is not the target population.  What is the value of the results of my research?  And what could be the cost to the company for this failure?  What could be the cost to the target user population, to have a device with a user interface unsuited to their needs?

In reality, the cost could be high, but the product may not be a dismal failure.  Given the fact that we are all human, we share a wide variety of characteristics.  However, in the more stringent regulatory environment that is anticipated, it could mean delay, additional research, engineering and product development costs.  If the product is intended to provide a new capability to providers and/or patients, a delay could mean that a competitor could be first to the market the product.  Thus company could miss the competitive advantage to being first.

I have recent experience with two products targeted to patients. In one case the target population was well understood and well defined, and members of that population were used in usability testing.  In another case, there was a limited understanding of the target population by the research and development organization. And no member of the target population involved at any stage of the research and development process or in the development of the user interface.   In the first case where the target population was well understood and well defined, the user interface research and development process was clear and logical.  On the other hand, the research and development process that did not have a clear understand of the target population is struggling, it is learning as it goes.  Each time it learns something new about its target population, the user interface has to be updated.  It has been a costly process with constant reworks of the user interface.  So many reworks that the integrity of the original design has been lost.  It appears deconstructed.  At some point the entire user interface will have to be redesigned and that will likely come at the behest of the FDA enforcing HE75.

A Final Thought

HE75 instructs that medical product user interfaces should accommodate a diverse groups of users and should be maximally accessible. I see this as design objective of any user interface in that vernacular should be limited as much as possible and that limiting qualities should not be designed in or should be removed when detected. However, all products may not be accessible to all users but should be clearly accessible to the target population.  And I believe that the FDA will insist on this.