Tuesday, March 24, 2015

Benefits of Remote Monitoring & Mayo Clinic Announcement

I've been arguing for some time that remote monitoring can not only lower medical costs, but it show itself to be of benefit to the patient as well. Here's an article that not only shows that remote monitoring can be of benefit to the patient, but to the physician as well.

Remote monitoring can not only provide better and more data ... that can lead to better analysis and conclusions. It can provide that data to the physician before the patient comes in for a visit. Furthermore, if an adverse medical event occurs, that data is captured and available to the attending health care providers. Admittedly the patient would have needed to have been wearing the monitoring device at the time, but if the person was wearing the monitoring device that information would be available.

Here's the link to the article: http://www.healthcareitnews.com/news/remote-patient-monitoring-steps-toward-new-era

Here are a few quotes from the article that I found interesting ...

... if you spend $100 a month to monitor patients remotely – over a year it would cost much less then what you would pay if they have to come back to the hospital.


[T]here are two waves of activity. The more traditional top down wave extends the reach of hospitals with FDA approved medical devices that are deployed out in the home by providers by doctors to keep track of these patients.
There is also an increasing consumer wave where people are going out and buying the sensors and devices on their own and tracking their fitness and health and bringing that information to their healthcare providers.
=== I find this quote interesting in light of the Apple Watch and other similar devices ======
Some physicians, Kleinberg asserted, don’t need and don’t want that data from the patient and claim that they don't have a place to put the data and they don't have time to look at it.
=== Actually, machines can monitor this data on a continual basis. The machines can alert physicians as needed and provide summaries. Physicians need not review raw data. ======
"There's a push back to this consumer-up bottom-up wave. But over time I think we're going to see that the sensors and the data that’s coming from these devices is going to have more and more value and providers are going to put more faith in it," said Kleinberg. "They're going to look at it and make some sense of it and part of the way they are going to do that is if they have more confidence about that data."
=== I think the last sentence may be one of the most significant in the article. Confidence in the data and automated analysis will build and become mainstream. And I think that cost considerations will be a factor. =====

Announcement Title: Mayo Clinic To Develop Wireless Sensors To Treat Obesity

I found this quite interesting when I came across it. The sensors are far from being developed but I thought it worth posting the announcement link.


Here's a quote from the announcement.

The goal is to produce the first wearable patch sensor – the size of a bandage – that is wireless, disposable, and can remotely monitor patient movements via smartphone. This new technology would simplify tracking with greater accuracy of patients and clinical trial subjects for whom a certain level of activity is prescribed to achieve their goals.

Internet of Things ... From a Connected Medical Device Perspective

Before I dive into the issues regarding the possible means for connecting medical devices to the Internet, I would like to provide you with a little background on two relevant research programs I have lead. I was the principal investigator on two Federally supported research programs described below.

The first was a NIST Research grant to support the development of a secure and commercially viable wireless data communications technology. Much of that technology has been incorporated into today's smartphones, although not all of what we created has yet found its way into the current generation of smartphones. But with each iteration, more of what we created gets incorporated.

A central part of our program was to insure secure and private data communications. It would be secure from infiltration by malware and impenetrable by snoops ... including the NSA. The system worked by securing and controlling both ends of the communication. It was capable of sending a single file to over multiple communications channels simultaneously, the packets could be sent out of order using multiple forms of encryption including nonstandard or private encryption methods -- that are much harder to break. By securing and controlling both ends of the connection between devices, we could completely control what went in and out of the channel. Nothing would flow to the other end that was out of our view or control.

The second Federal grant was for a data security program. VoIP communications channels are lightly secured largely due to the requirements to insure that audio is clear and voices understandable. This fact makes VoIP channels particularly vulnerable vectors to use for an attack. There have been attempts to logically divide voice and data channels; however, there have been several demonstrations that this does not always work. Our research focused on methods to detect the presence of an intruder without disrupting or significantly lowering audio quality. And when we detected a possible intruder, we attacked this apparent intruder through a series of escalating techniques that could finally end with terminating the connection when it was clearly apparent that an intruder was using the VoIP connection to do something nefarious.

Architectures for the Internet of Things

The two architectures I would like to review are direct and mediated connections that could be used in the realm of the Internet of Things.

Direct and mediated connections are illustrated in the figure below.


The real difference between the two diagrams is the way the Apple Watch is connected to the Internet. On the left the Watch is directly connected to the Internet. When connected, it is an addressable device on the Internet. On the right, the Watch is connected to the Internet through the iPhone. The iPhone mediates the connection to the Internet through the iPhone. All the data traffic to and from the Watch goes through the iPhone.

A mediated connection through the device can be as simple and unmanaged as one through a router. However, with the appropriate software on the iPhone, the iPhone should be able to manage the connection with and security of the Watch.

In the case of the direct connection, management of the connection to the Internet including security must be done by the Watch itself. The Watch could be subject to a direct attack and must defend against such an attack by itself.

Best Architecture for Medical Devices?

In the diagram above, I'm treating the Watch as if it were a medical device ... and a medical device it could be. It would seem that the safest connection to the Internet would be a mediated connection. However, there are hybrid scenarios. For example, incoming communications including software updates could require a mediated connection. Encrypted uploads from the Watch to a centralized server system could use a direct connection.

This is a brief introduction into this topic. I'll have further explorations into this issue in future articles.

Monday, March 23, 2015

More on Apple Watch as a Medical Monitoring Device

I recently ran across an article about Apple's continuing work to make the Watch a medical monitoring device. Here's a link to that article:
http://appleinsider.com/articles/15/02/16/apple-scrapped-advanced-apple-watch-health-monitoring-features-due-to-reliability-issues

According to the article Apple considered including a number of medical monitoring devices/capabilities for their first generation Watch. For the first generation, those have been scrapped for reliability and regulatory reasons. Apparently Apple is still interested in adding more physiological sensors to the Watch, but if those capabilities appear, they'll be included in next generation Watches.

However, there was something that caught my interest from the article:

"Aside from catchall smartwatch devices, a number of standalone solutions for off-the-shelf medical style monitoring already exist in the form of products — usually wrist-worn — from smaller manufacturers and startups. For example, the W/Me band incorporates a specialized sensor to measure a user's autonomic nervous system for keeping track of stress levels, while the latest products from Fitbit tout all-day heart rate monitoring."


There are lots of other companies making sensors that would be useful for medical monitoring purposes. For Apple and the Watch there are many ways this can play out. Frankly none of these are mutually exclusive.

  1. Apple can purchase the sensing technology to incorporate into Apple-produced sensors.
  2. Apple can purchase the sensors and integrated them into the Watch 
  3. The third-party sensors can communicate with the Apple Watch over WiFi. 
The data collected by the Apple Watch could be:

  1. Analyzed and presented locally ... by the Watch
  2. Uploaded to the iPhone were the iPhone would process the data and either communicate it back to the Watch for display or be displayed on the iPhone ... or both.
  3. Uploaded to the iPhone that intern uploads it to a centralized system for processing. The results of that analysis could be communicated back for display on the iPhone or Watch. If so indicated an alert could be included if conditions warranted. 
Again, none of these are mutually exclusive. Data could be processed and displayed on the Watch and communicated back to a centralized system.

More updates on the Apple Watch to come ...

Friday, March 20, 2015

Biotronik Eluna Pacemaker System Given FDA Approval for MRI Full Body Scans

A brief note ... the FDA has given approval the patients implanted with the Biotronik Eluna pacemaker can safely undergo full MRI body scans. Note, this approval does NOT say that this pacemaker is MRI-safe. Someone implanted with this pacemaker cannot be placed in an MRI without making the necessary changes.

The pacemaker is MRI-conditional ... meaning that it is safe for a patient with a Biotronik Eluna pacemaker with the ProMRI technology to undergo a full-body MRI scan under the condition that the settings on this pacemaker are properly set to their MRI conditional settings.

... sometimes I worry that announcements like these can be misinterpreted and could lead to something bad happening. I've seen an article regarding a Biotronik pacemaker that stated that the pacemaker was "MRI-safe" when it wasn't true. As of this date and as far as I know, there are no MRI-safe pacemakers. The one's where the FDA has approved MRI compatibility are all MRI-conditional.

Here are links to two articles announcing FDA's approval:

Remote Medicine: Virtual Doctor Visits and Virtual Doctors

I had a chance to review the page-hits I received over the life of this blog and it turned out that my short posting regarding an article in the Washington Post that discussed virtual doctor visits was the one most requested. Frankly, I found this flabbergasting, because this blog was founded on the belief that remotely practiced medicine can be good medicine ... as good or potentially better than the medicine practiced in offices, clinics and hospitals. And I'm going to take it a step further with the idea that virtual doctors may be just for those who live in rural areas or even in difficult circumstances inner cities, virtual doctor visits may be the wave of the future ... and you'll be better for it.

Let's explore ...

Virtual Doctor Visits


Title: Five Reasons Virtual Doctor Visits Might be Better than In-Person Ones by Jonah Comstock (8 May 2013).

The five reasons listed all make sense. They are:
  1. The visits are convenient for both the doctor and the patient. 
  2. The virtual waiting room is better than the doctor's office, clinic or hospital. 
  3. Enables greater patient engagement through screen sharing
  4. Automatic and more convenient record keeping
  5. Patients have the sense that doctors are paying better attention to them during a virtual visit
Virtual doctor visits seem to be in the upswing in Canada as well as this article explains. Link: http://www.ctvnews.ca/health/doctors-increasingly-making-virtual-house-calls-1.1907050

And another in depth article with a video from a Virginia news outlet, The Daily Press published in July 2014: http://www.dailypress.com/health/dp-nws-telemedicine-diagnosis-20140727,0,1252177.story

Personally, I would prefer a virtual visit over the need go to the doctor's office, clinic or hospital.

Virtual Doctors

While virtual doctor visits certainly seem to be on the upswing with increasing acceptance, the idea that a computerized physician could be your primary physician would seem to most like science fiction. And at this point in time, it is. However, computerized medicine doing the things that only physicians once performed has been the works for decades. In later posts, I'll explore this in greater detail.


Much of my writing on these topics will be in conjunction with my further explorations of the Apple Watch and its emerging capabilities.

Stay posted. 


Apple Watch: An Emergent Medical Monitoring Device?

Apple has been grappling with the design and capabilities of a smart watch for years. Apple CEO Tim Cook announced that Apple would produce a smart watch in September 2014. The initial rollout is scheduled for 25 April 2015.

Tim Cook has suggested that the Apple Watch would do more than provide its owner with the time and as a wearable means to communicate with your iPhone ... something that you would rather leave in your pocket or purse. He suggested that this device could also serve as a means to assist people with monitoring their health and fitness. But can this device that is strapped to your wrist really do that?

Research on Smart Watches and Their Owners


Before doing the deep dive into the Apple Watch, I want briefly discuss some of my experience with researching smart watches. I can't divulge all the details of that research because some of that work that I was part of a research team is proprietary. I can say a few things about smart watches, the variety of their capabilities and some of the opinions about them that people who have used them have provided.

The smart watches that we used in our research had capabilities that fell into two categories. The first were capabilities that allowed the owner to communicate with and control their smartphone. For example, a smart watch would allow an owner to control music or podcasts being played or allow the owner to make and receive calls through the smart watch. Communication between the two devices was over Bluetooth (IEEE 802.15.1) The second were independent capabilities this can include GPS map capabilities, collecting and displaying running or cycling distances and routes. And providing the date and time.

We found that owners of smart watches were initially excited and enthusiastic about owning a smart watch. However, over time that excitement and interest disappeared ... and disappeared to the point where most owners were considering ways to rid themselves of their smart watches. Based on our research, smart watches seemed like a good idea. But once initially-enthusiastic owners tried to incorporate smart watches into their lives, their response to them became negative.

Apple Watch


The Apple Watch is almost upon us with great fanfare. Based on photographs and my read of the hardware and descriptions of the Apple Watch, it appears to be stylish that its predecessors ... an important quality. It appears that it will have many of the same capabilities as it's predecessors as well ... the ability to communicate with and control the owners iPhones (5 or later) - the smart watch will have Near Field Communication (NFC), Bluetooth (4.0), a speaker, microphone and a touch screen to enable communication and control - and a number of independent capabilities based on the following embedded sensors: accelerometer, gyroscope, heart rate sensor and barometer.

Beyond the heart rate sensor, what else might make the Apple Watch a wearable system to assist people with their health and fitness? I'm not sure, but what I found interesting about the Apple Watch, what makes it potential game changer in the realm of health and fitness is this: WiFi (802.11 b/g/n).

From all that I can tell, the inclusion of WiFi could be something that might make the Apple Watch something significant with respect to means for medical monitoring. WiFi is different from Bluetooth in that Bluetooth creates a dedicated one to one communications channel. A WiFi access point (AP) can support multiple, simultaneous connections. Is Apple working with other companies to create new body sensors that can communicate with the Apple Watch using WiFi? It's plausible and well worth watching. 

Monitor this blog ... more on this to come.


Sunday, July 27, 2014

RIP: Death by Medical Error, 400,000 year in the US

In 2013 there were over 35,000 traffic deaths in the US. That's over 10 fatalities per 100,000. (Scotland appears the safest at just over 3 per 100,000, Germany by contrast has a rate less than 5 per 100,000, Argentina has over 12 per 100,000 and South Africa the "winner" per over 27 per 100,000.)

Contrast that with an estimated 400,000 deaths by medical errors ... that's around 130 deaths per 100,000. I don't know about you, but for me that raises real concerns. When I got into the field of human engineering for medical devices in 2009, I saw reports of around 100,000 per year in the US. I found that shocking. Now it's being reported that medical errors are killing 4 times more people than we originally believed? Takes your breath away.

The article that reports this finding is:

James, John T. (2013) A new evidence-based estimate of patient harms associated with hospital care. Journal of Patient Safety, Lippincott Williams & Wilkins.

Here a link to the article that report this with a portion of the abstract. The article is free and worth reading.

Link: http://journals.lww.com/journalpatientsafety/Fulltext/2013/09000/A_New,_Evidence_based_Estimate_of_Patient_Harms.2.aspx

Abstract (Redacted)

Based on 1984 data developed from reviews of medical records of patients treated in New York hospitals, the Institute of Medicine estimated that up to 98,000 Americans die each year from medical errors. The basis of this estimate is nearly 3 decades old; herein, an updated estimate is developed from modern studies published from 2008 to 2011.
[T]he true number of premature deaths associated with preventable harm to patients was estimated at more than 400,000 per year. Serious harm seems to be 10- to 20-fold more common than lethal harm.

Another article that suggests that death by medical error may still be underreported

Here's a recent article in Baltimore's THE SUN that describes how Maryland hospitals are underreporting their medical errors. This is likely just the tip of the iceberg nationally on this story. 


This article cites the James article above.

Saturday, July 26, 2014

How This Blog Got Going: MRI Safe and Conditional Pacemakers, Reprise

I have decided to return to the thing that I was working on when I started this blog ... an MRI conditional pacemaker. Specifically, an MRI conditional pacemaker for St. Jude Medical. At the time I was Lead Human Engineering Clinical Systems Engineer on this project. Before I go any further I would like to distinguish between MRI conditional and MRI safe devices. It is important to distinguish between the two.

MRI Conditional v. MRI Safe

Having an MRI safe implanted cardiac device is the ideal situation. If the cardiac device is MRI safe, it means that a device patient can be "popped" into an MRI without any changes to the device. For the patient it's just like the person does not have an implanted device. The only difference is that the resulting imagery from the MRI around the device may not be as good if the person did not have an implanted device. 

An MRI conditional device presents some significant procedural challenges to all those involved. If a person has an MRI conditional device, certain conditions must be met before the device patient is allowed to enter the MRI. When I was working at St. Jude Medical, changes in the settings that operate the device are required before the patient enters the MRI. Once scanning is complete, the settings need to be changed back to their normal, operational settings.

As of publication of this article, only one medical device company has a commercially available MRI safe pacemaker, Biotronik. St. Jude Medical and Medtronic have commercially available MRI conditional devices. 

When I was work at St. Jude, the only cardiac device being engineered to permit patients to have MRI scans were pacemakers. At the time ICDs and CRTs were not considered for MRI compatibility. However, apparently, Biotronik has developed an MRI conditional ICD that is commercially available ... at least in Europe.

There are other issues regarding MRI compatibility such as whether there are limits on the area that can be scanned a cardiac device patient ... something other than a full body scan. The allowable limits on how much can be scanned are continually in flux. But this particularly issue does not have anything to with the story I want to tell.

My Experience with the MRI Conditional Project

The St. Jude Medical MRI conditional pacemaker was engineered to enable patients to undergo an MRI scan. To insure that pacemaker patients would not be harmed by the scan required that the operating settings on the pacemaker be adjusted. (To make a long story short ... a change in the setting needed to make sure that the sensing lead to heart be turned off. The pacemaker could be changed to constant pace or turned off entirely if the patient is not pacemaker dependent ... as most pacemaker patients are.)

So the major problem in this entire issue was in regards to how to change the settings on the device? Who would do it, how would it be done, what would the settings be? Essentially three basic approaches were considered:
  1. Have the patient's cardiac physician or cardiac nurse go to the MRI center, lugging their device programmer with them, change the settings on the patient's device to those that are MRI compatible, wait for the scan to complete, reset the settings to normal and examine the patient to insure that the patient is OK.
  2. Have the settings changed remotely. The patient is at the MRI center, the cardiac professional is in the office, at the hospital or at home. This is known as "remote programming."  At the time this was something that the FDA did not allow. Using remote programming, the patient's device communicates wireless to a pacemaker communicator located at the MRI center. The cardiac professional sees a 30 second rhythm strip before setting the patient's device to the MRI settings and sees another 30 second rhythm strip after the changes have been made. (Just like an onsite cardiac professional would do.) The patient undergoes the scan. During that time, the professional can perform other tasks. Once the scan is complete, the cardiac profession changes the pacemaker settings back to normal and sees the before and after rhythm strips. 
  3. The pacemaker is programmed with two settings by the cardiac professional using the programmer. The first set of settings define the normal operation of the pacemaker. The second set are the MRI settings: that is, the settings of the pacemaker when the patient undergoes an MRI scan.  When the pacemaker patient goes to the MRI center, the MRI tech takes a wand (that's best way I can describe it.) and changes the settings from normal to MRI. Once the patient completes the MRI scan, the MRI tech uses the wand to change the patient's setting back to normal. 
I became quickly apparent that cardiac professionals had no interest in option 1. As it turned out St. Jude Medical chose the third approach. 

When the third approach was described, I had numerous objections ... mostly related to the device that would change the setting on the pacemaker. Thankfully, there have been substantial changes and upgrades made to the wand. However, I wanted to purse option 2, remote programming. And the desire to purse option 2 inspired me to start this blog ... hence the title Medical Monitoring & Remote Programming.

Wherefore Remote Programming?

Most physicians showed some hesitancy when it came to adopting remote programming. They saw it as unproven ... and they were right, it was (and so far as I know still is) unproven and still not acceptable to the FDA. However, many if not most were intrigued by the idea and thought that the technology should be pursued. Many clearly saw the potential value of the technology, the value of being able to monitor patients remotely with the potential ability to change cardiac device settings without the patient being in the office could be a revolution in patient care ... not only for people with chronic conditions like heart problems, diabetes or neurological problems that involve implanted devices, but potentially everyone. And it need not involve the need for implanted or wearable devices. We'll explore this in later postings.



Friday, July 25, 2014

Restarting the Blog

To all,

I'm restarting the blog after a three year layoff. I happened to look at whether this dated blog was still getting hits. And as it turns out, it still is.

During my layoff, there have been significant developments ... including some articles about hacking medical devices. This blog discussed that at least two years before that discussion was raised in the commercial, mainstream media.

So, time for a new start.