Monday, October 19, 2009

Update on 29 September 2009 Posting

I have an update related to my 29 September posting, Medtronic Remote Programming Patent.I stated the following in that posting ...

I believe that Medtronic's patent ... reveals not only the extent of Medtronic's work on remote programming and their level of development of this technology, it reveals a product development path. ... The strategy that I believe Medtronic has taken is in keeping with long-standing trends in technology development.

Over the last several decades, the trend has been to move away from  specialized to more powerful, general-purpose processors. This enables products to be defined more by software than by hardware. Processing power has become smaller, less power hungry and cheaper, thus allowing software to become the means for defining the system's capability. Furthermore, this enables multiple products to be defined by a single hardware platform. ...

The Medtronic patent suggests a similar product strategy ... that different products will use fundamentally the same hardware architecture, but they will be defined by the software that they run. So, a pacemaker, a neurostimulator and a drug pump will share the same processor hardware platform, but their operation will be defined primarily by the software that they run. For example, take some time and examine pacemakers, ICDs. CRTs/CRT-Ds, neuro-stimulators, drug pumps, etc.  Although they have different purposes, they have enough in common to consider the possibility that all of them could share a common processor platform.

The implications are significant for all functional areas within Medtronic, from research and development, product development, software development and management, and from product support. Medtronic can leverage its enormous scale to make its scale as a company a major asset. It can substantially reduce the number of hardware platforms it supports, it can leverage its software development capabilities to have its software development groups produce software for multiple product lines, it can create more products without a substantial requirement for additional support each time a product is produced. ...



I unearthed an article published in the August 2008, Journal of Computers, titled "Design Overview Of Processor Based Implantable Pacemaker" authored by Santosh Chede and Kishore Kulat both from the Department of Electronics and Computer Science Engineering at the Visvesvarayan National Institute of Technology. (I do not have an address for you to access this article, however, if you search on the journal, the title and authors, you will find it.)


Their article describes the means by which they created a pacemaker using at Texas Instrument (TI) MSP430F1611 processor to build a pacemaker.  The TI MSP430 processor (TI MSP430 Microcontroller Website) is a general purpose RISC processor similar in architecture to the DEC PDP-11.  The TI MSP430 is designed for ultra-low power consumption and targeted to battery-powered, embedded applications.  In other words, this would be the kind of processor on which to base a line of implantable medical devices.  Having looked around the website, I noted that the application of the processor included medical devices, but not implants.  However, based on the Journal of Computers article, I can see a clear route to creating implants using this processor. (I haven't yet found a comparable processor, however, I suspect the existence of one or more.  As I find additional processors in this class, I shall make them known in this blog.)


Finally, I think the important message of the Journal of Computers article is that it is possible to use a general purpose processor and software to create a pacemaker or any other implantable medical device such as a neuro-stimulator, CRT-D, or drug-pump. As I discussed earlier, using a general purpose processor and software to create the product, can be an effective business and technical strategy.  




No comments:

Post a Comment