Showing posts with label Medtronics. Show all posts
Showing posts with label Medtronics. Show all posts

Friday, March 27, 2015

Welch Allyn Published Patent Application: Continuous Patient Monitoring

I decided to review this patent application in light of the New York Times Opinion piece I commented on. Here's the to my commentary: http://medicalremoteprogramming.blogspot.com/2015/03/new-york-times-opinion-why-health-care.html

Also, I've gone back to the origins of this blog ... reviewing patents. The first patent I reviewed was one from Medtronic. Here's the link: http://medicalremoteprogramming.blogspot.com/2009/09/medtronics-remote-programming-patent.html

The issue raised of particular interest was the high "false alarm" rate generated reported by the author that would lead medical professionals to disregard warnings generated by their computer systems. I wrote that I wanted to follow-up on the issue of false alarms.

The patent application (the application has been published, but a patent has not yet been granted) describes an invention intended to 1) perform continuous automated monitoring and 2) lower the rate of false alarms.

Here are the details of the patent application so that you can find it yourself if you wish:



The continuous monitoring process from a technical standpoint is not all that interesting or new. What is interesting is the process they propose to lower the false alarm rate and determine whether this process in turn will not lower the false negative rate.

Proposed Process of Lowering False Alarms

As mentioned in my earlier article, it appears that false alarms have been a significant issue for medical devices and technology. Systems that issue too many false alarms issue warnings that are often dismissed or ignored. Or waste the time and attention of caregivers who spend time and energy on responding to a false alarm. This patent application is intended to reduce the number of false alarms. However, as I mentioned earlier, can it do that by not increasing the number of false negatives, that is, failure to detect when there is a real event where an alarm should be going off.

Getting through all the details of the patent application and trying to make sense of what they're trying to convey, the following is what I believe is the essence of the invention:


  • Measurement a sensor indicates an adverse patient conditions and an alarm should be initiated.
  • Before the alarm is initiated, the system cross-checks against other measurements that are: 
              1) from another sensor measuring essentially the same physiological condition as the
                  sensor that detected the adverse condition, the measurement from the second sensor
                  would confirm the alarm condition or indicate that an alarm condition should not exist; or
              2) from another sensor or sensors that take physiological measurements that would confirm
                  the alarm condition from the first sensor or indicate that an alarm condition should not
                  exist.

In this model at least two sensors must provide measurements that point to an alarm state.

Acceptable Model for Suppressing False Alarms and Not Increasing False Negatives?

Whatever you do in this domain of detecting adverse patient conditions, you don't want to lower your accuracy of detecting the adverse condition. That is, increase your false negative rate.

So is this one way of at least maintaining your currently level of detecting adverse events and lowering your false alarm rate? On the face of it, I don't know. But it does appear that it might be possible.

One of the conditions the inventors suggest that initiates false alarms are those times when patients move or turn over in their beds. This could disconnect a sensor or cause it to malfunction. A second sensor taking the identical measurement may not functioning normally and have a measurement from the patient indicating that nothing was wrong. The alarm would be suppressed ... although, if a sensor was disconnected, one would expect that there would be a disconnected sensor indicator would be turned on.

Under the conditions the inventors suggest, it would appear that cross checking measurements might reduce false positives without increasing false negatives. I would suggest that care should be given to insure that a rise in false negative rates do not increase. With array of new sensors and sensor technology becoming available, we're going to need to do a lot of research. Much of it would be computer simulations to identify those conditions were an adverse patient condition goes undetected or suppressed by cross-checking measurements.

Post Script

For those who do not know, I am on numerous patents and patent applications (pending patents). Not only that I have written the description section of a few patent applications. So I have a reasonable sense of what is what is not patentable ... this is in spite of the fact that I'm an experimental, cognitive psychologist and we're not general known for our patents.

So, what is my take on the likelihood that this applications will be issued a patent? My sense is not likely. As far as I can tell there's nothing really new described in this application. The core of the invention, the method for reducing false alarms, is not new. Cross-checking, cross-verifying measurements to determine if the system should be in an alarm state is not new. As someone who has analyzed datasets for decades, one of first things that one does with a new dataset is to check for outliers and anomalies - these are similar alarm conditions. One of the ways to determine whether an outlier is real, is to cross check against other measures to determine if they're consistent with and predictive of the outlier. I do not see anything that is particularly new or passes what known in patent review process as the "obviousness test." For me cross checking measures does not reach the grade of patentability.







Tuesday, June 28, 2011

Hacking Grandpa's ICD: Why do it?

Background

I am part of another professional discussion group with an interest in Medical Data, System and Device security.  One of the topics was whether medical devices are a likely target for cyber-attacks.  I made a contribution to the discussion and stated that I believed that although unlikely, I thought that medical devices will eventually be targets of cyber-attacks.  But putting data security measures into medical devices is at odds with the directions that the medical device industry wants to take its product lines.  The trends are for smaller and less power-hungry devices.  Adding data security measures could increase power demands, increase battery sizes and thus increase device size.  Nevertheless, I believe that starting the process of putting data security measures into the medical devices has merit.

I received a well-reasoned response that hacking medical devices was highly unlikely and research funding on security measures for medical devices would be money best spent elsewhere.  That response started a thought process to develop a threat scenario to address his points.

I reviewed my earlier article on "hacking medical devices," http://medicalremoteprogramming.blogspot.com/2010/04/how-to-hack-grandpas-icd-reprise.html.  I revisited the paragraph in my regarding the motivation for hacking a medical device, an extortion scheme. 

When I wrote that article, I did not have any particular scheme in mind.  It was speculation based more on current trends.  Furthermore, I did not other motivations as particularly viable - data theft, not much money or value in stealing someone's implant data or killing a specific person, there are easier ways to do this although it might make a good murder mystery.

I did come up with a scenario, and when I did, it was chilling.





The Threat Scenario

First, as I had previously suggested, the motivation for hacking medical devices would be extortion.  The target of the extortion would be the medical device companies.  Before getting into the specifics of the extortion scenario requires that you understand some of the technologies and devices involved.

The wireless communications of interest occurs between a "base station" and a wirelessly enabled implanted device as shown in the figure below.

The base station need not be at a permanent location, but could be a mobile device (such as with the Biotronik Home Monitoring system).  The base station in turn communicates with a large enterprise server system operated by the medical device company.


The two systems communicate use wireless or radio communication.  For example, St. Jude Medical uses the MICS band - a band designed by the FCC for medical devices in the range of 400Mhz.  To insure that battery usage for communications is minimal, the maximum effective range between is stated as 3 meters.  (However, I have seen a clear connection established at greater 3 meters.)  


In general, the implant sends telemetry data collected it has collected to the base station.  The base station sends operating parameters to the implant.  Changing the operating parameters of the medical device is know as reprogramming the device and define how the implant operates and the way the implant exerts control over the organ to which it is connected.


Device Dialogue of Interest to Hackers

As you probably have guessed, the dialogue of interest to those with criminal intent is the one between the base station and the device.  The "trick" is to build a device that looks like a legitimate base station to the medical device.  This means that the bogus device will have to authenticate itself with the medical device, transmit and receive signals that the device can interpret.  In an earlier article (http://medicalremoteprogramming.blogspot.com/2010/03/how-to-hack-grandpas-icd.html), I discussed an IEEE article (http://uwnews.org/relatedcontent/2008/March/rc_parentID40358_thisID40398.pdf**) where the authors had constructed a device that performed a successful spoofing attack on a wireless Medtronic ICD. So, based on the article, we know it can be done.  However, based on the IEEE article, we know that it was done at distance of 5 cm.  This was aptly pointed out in a comment on my "How to Hack Grandpa's ICD" article.


Could a Spoofing/Reprogramming Attack be Successful from Greater than 5 cm or Greater than 3 meters?


I believe the answer to the question posed above is "yes."  Consider the following lines of reasoning ...
  1. As I had mentioned earlier, I know that base stations and medical devices communicate at distances of 3 meters and can communicates greater distances.  The limitation is power.  Another limitation is the quality of the antenna in the base station.  The communication distance could be increased with improvements in the antenna and received signal amplification. 
  2. The spoofing/reprogramming attack device could be constructed to transmit at significantly greater power levels than current base station.  (Remember, this is something built by a criminal enterprise.  They need not abide by rules set by the FCC.)  Furthermore, a limited number, maybe as few as one or two, of these systems need be constructed.  I shall explain why later.
  3. A base station can be reverse-engineered.  Base stations can be easily obtained by a variety of means.  Medical devices can be stolen from hospitals.  Documentation about the communication between the medical device and the base station can be obtained.
Thus, I believe the possibility exists that a device that emulates a base station and could successfully perform a spoof/reprogramming attack from a significant distance from the target is possible.  The question is, what is to be gained from such an attack?


Attack Motivations


Extortion: Earlier I mentioned that in an other article, I suggested that the motivation would be extortion: money, and lots of it.  I think the demands would likely be in the millions of US dollars.

In this scenario, the criminal organization would contact the medical device companies and threaten to attack their medical device patients.  The criminal organization might send device designs to substantiate their claims of the ability to injure or kill device patients and/or send the targeted company with news reports sudden unexplained changes in medical devices that have caused injuries or deaths in device patients.


Market Manipulation: Another strategy would be as a means to manipulate the stock prices of medical device companies - through short-selling the stock.  In this scenario the criminal organization will create a few base station spoofing/reprogramming systems. Market manipulation such as placing the value of the stock at risk could be a part of the extortion scheme.




Book of Interest: Hacking Wall Street: Attacks And Countermeasures (Volume 2)


In another article I'll discuss how someone might undertake an attack.




** Halperin, D, Heydt-Benjamin, T., Ransford, B., Clark, S., Defend, B., Morgan, W., Fu, K., Kohno, T., Maisel, W. Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses, IEEE Symposium on Security and Privacy, 2008, pp 1-14.

Sunday, September 27, 2009

Medtronic Patent, Continued: Managing Multiple Devices

To my readers, you should read the posting that immediately precedes this one for background information.


One of the more intriguing aspects of the recently issued Medtronic patent is the capability to manage multiple implanted devices. Here's a list of possible implanted devices included in the patent's description ...

"cardiac stimulation devices, cardiac or other physiological monitoring devices,
neuromuscular stimulators, implantable drug pumps, or the like."

An earlier patent application from St. Jude Medical (Pacesetter) filed in 2001 (listed in this patent as
"System and method for remote programming of implantable cardiac stimulation devices" by Snell, et al) was limited to cardiac implanted devices. I find it interesting that this broader and more inclusive patent application has receive a patent, and the narrower, earlier filed patent application from the cardiac device division of St. Jude Medical has not.

Nevertheless, the broad coverage of the Medtronic patent does make things more interesting. As I discussed in an earlier post, patients who have implanted medical devices (IMDs) generally have more than one medical problem, and one or more of those additional medical problems have a significant likelihood of being addressed by an implantable device. For example, a patient may have both a heart problem and diabetes, both of which can be treated with implanted medical devices.

So, if a patient has more than one IMD, how does one manage that? Medtronic makes a wide range of devices. Would every device require it's own external patient management and communications unit? (See Figure 1 of the patent. The external unit is pictured as a laptop computer.) I've seen the solution from one large medical device provider and the answer is "yes." Each device would require it's own monitoring unit.

It may be that Medtronic is attempting to address this issue. The patent application suggests a single, intelligent external patient management and communications unit could manage any of the devices Medtronics produces. I find it interesting that in Figure 1, the monitoring unit shown is a laptop computer. A laptop should be able to provide more than enough computing power and communications capability to manage multiple implanted devices.

Let's take this mode of thinking a bit further ... the patent suggests that Medtronic might well be settling on a single platform, a single system to manage its IMDs, in any combination. This makes sense and it would be a significant cross-company breakthrough if they were able to pull it off.

To contrast with the smallest of the big-three medical device companies, St. Jude Medical is a much smaller company, but makes many of the same devices that Medtronic produces. However, St. Jude Medical is highly fragmented due in part that much of its growth has come through acquisition. Its much of its cardiac device division was originally Pacesetter that was acquired from Siemens. Other companies have been acquired and have been integrated into its cardiac device division. (This is no small achievement.) However, the cardiac division remains separate from the rest of the St. Jude Medical divisions. There is no cross division platform.

Medtronic is a more integrated company than St. Jude Medical, but it is significantly larger and more
un-wieldy. Nevertheless, Medtronic may be able to pull it off and settle on a company wide external patient management and communications unit platform and software architecture.

I want to take my speculation one step further. I shall not go into to detail here, but I want to raise the question and address it more detail in a later posting. I think it's fair to speculate that if Medtronic is considering a company-wide platform and software architecture for their external patient management and communications unit then it makes sense to consider a common platform and architecture for their implanted medical devices. This would be a revolution in medical device technology, but is Medtronic considering this? It is anyone's guess and I shall devote at least one posting to this issue.